SUPPORTING INFORMATION

Trapping conformational states of a flavin-dependent *N*-monooxygenase *in crystallo* reveals protein and flavin dynamics

Ashley C. Campbell¹, Kyle M. Stiers¹, Julia S. Martin Del Campo², Ritcha Mehra-Chaudhary¹, Pablo Sobrado^{2,*}, John J. Tanner^{1,3,*}

¹Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
 ²Department of Biochemistry, Virginia Tech, Blacksburg, VA, 24061, USA
 ³Department of Chemistry, University of Missouri, Columbia, Missouri 65211, USA

*Corresponding Authors John J. Tanner – E-mail: <u>tannerjj@missouri.edu</u>. Pablo Sobrado –E-mail: psobrado@vt.edu.

Table of Contents

Table S1. FAD Conformations in ornithine hydroxylase structures	S2
Table S2. X-ray diffraction data collection and refinement statistics	S3
Table S3. SMILES of the top 10 compounds from docking	S4
Table S4. Physicochemical properties of the top 10 compounds from docking	S5
Figure S1. Biosynthetic pathway for hydroxamate-containing siderophores	S 6
Figure S2. Electron density for the active sites of SidA structures	S 7
Figure S3. Multiple sequence alignment of ornithine hydroxylases	S 8
Figure S4. Hydrogen bonding between His91 and the ribityl 4'-OH of SidA	S9
Figure S5. Chemical structures of the top 10 compounds from docking to site 1	S10
Figure S6. Chemical structures of the top 10 compounds from docking to site 2	S11
Figure S7. The top-ranked compound docked to site 2	S12

	PDB ID	Active Site Ligands ^a	Space Group	Resolution (Å)	Muta- tion	Flavin Redox State	Flavin Conformation
SidA	4B63	FAD, NAP, ORN	I222	1.90	WT	ox	in
SidA	4B64	FAD, NAP, LYS	I222	2.28	WT	ox	in
SidA	4B65	FAD, NDP	1222	2.32	WT	red	in
SidA	4B66	FAD, NAP, ARG	1222	2.90	WT	red	in
SidA	4B67	FAD, NAP, ORN	1222	2.75	WT	reoxidised	in
SidA	4B68	FAD, NAP, ARG	1222	2.29	WT	reoxidised	in
SidA	4B69	FAD, ORN	1222	2.30	WT	ox	in
SidA	5CKU	FAD, NAP, ORN	1222	2.10	N323A	ox	in
PvdA	3S5W	FAD, NAP, ONH	I4122	1.90	WT	OX	in
PvdA	3S6 1	FAD, NDP, ORN	I4122	3.03	WT	red	in
KtzI	4TLX	FDA, K, NAP, ORN	P212121	2.23	WT	red	in
KtzI	4TLZ	FAD, K, NAP, ORN	P212121	2.41	WT	OX	out
KtzI	4TM0	FAD, K, NAP, ORN	P212121	2.74	WT	reoxidised	out
KtzI	4TM1	FDA, BR, NAP	P212121	2.39	WT	red	in
KtzI	4TM3	FAD, BR	P212121	2.09	WT	ox	out
KtzI	4TM4	FDA, BR, NAP	P212121	2.63	WT	red	in

 Table S1

 FAD conformations in SidA, PvdA, and KtzI ornithine hydroxylase structures

^aLists the PDB ligand IDs stated in the entry.

	FADox	FAD _{ox} –	FAD _{red} –	FAD _{red} –
		NADP ⁺	NADP ⁺ -	L-Orn
			L-Orn	
Beamline	APS (24-ID-C)	ALS (4.2.2)	APS (24-ID-C)	APS (24-ID-E)
Space group	$P2_1$	P21	P21	P21
Unit cell	a = 76.8,	a = 80.5,	a = 85.2,	a = 105.9
parameters (A,°)	b = 156.9,	b = 154.9,	b = 153.0,	b = 155.0,
	c = 88.6,	c = 90.5,	c = 91.1,	c = 146.85,
	$\beta = 110.4$	$\beta = 109.2$	$\beta = 110.9$	$\beta = 91.01$
Mols. in asu.	4	4	4	8
Wavelength (A)	0.97918	1.00000	0.97918	0.97918
Resolution (A)	156.9 - 2.09	63.2 - 1.95	153.0 - 2.34	155.04 - 2.23
	(2.12 - 2.09)	(1.98 - 1.95)	(2.38 - 2.34)	(2.26-2.23)
Observations ^a	265666 (10926)	544409 (24487)	374864 (9559)	1006051 (37428)
Unique reflections ^a	114542 (5054)	151085 (7458)	90888 (3292)	225621 (8596)
$R_{ m merge}(I)^{ m a}$	0.110 (0.858)	0.092 (0.790)	0.198 (1.372)	0.209 (1.400)
$R_{ m meas}(I)^{ m a}$	0.142 (1.113)	0.108 (0.947)	0.227 (1.637)	0.239 (1.583)
$R_{\rm pim}(I)^{ m a}$	0.088(0.702)	0.056 (0.516)	0.111 (0.874)	0.113 (0.727)
Mean I/ σ^{a}	6.0 (1.0)	12.1 (1.5)	8.9 (0.8)	7.8 (1.0)
$CC_{1/2}$	0.991 (0.416)	0.997 (0.523)	0.984 (0.8)	0.986 (0.399)
Completeness (%) ^a	98.4 (87.4)	99.5 (99.0)	98.5 (71.9)	97.6 (75.2)
Multiplicity ^a	2.3 (2.2)	3.6 (3.3)	4.1 (2.9)	4.5 (4.4)
No. of protein residues	1788	1771	1807	3510
No. of atoms				
Protein	13867	14033	13964	27310
FAD	212	265	212	424
L-Orn	N/A	N/A	36	54
NADP ⁺	N/A	192	192	N/A
Water	526	1069	398	383
$R_{\text{cryst}^{a}}$	0.1823 (0.2856)	0.1682 (0.2588)	0.1835 (0.2987)	0.2307 (0.3103)
$R_{\rm free}^{\rm a,b}$	0.2322 (0.3321)	0.2110 (0.2990)	0.2491 (0.3375)	0.2807 (0.3580)
rmsd bonds (Å)	0.007	0.006	0.007	0.008
rmsd angles (°)	0.919	0.869	1.020	1.029
Ramachandran plot ^c				
Favored (%)	96.72	97.14	96.59	97.39
Outliers (%)	0.11	0.00	0.11	0.03
Clashscore (PR) ^c	2.13 (99)	1.78 (100)	2.81 (100)	3.73 (99)
MolProbity score (PR) ^c	1.34 (99)	1.09 (100)	1.49 (99)	1.48 (99)
Average $B(\dot{A}^2)$				
Protein	37.7	30.2	35.0	57.8
FAD	32.6	23.6	28.6	49.4
L-Orn	N/A	N/A	26.1	41.5
NADP ⁺	N/A	27.6	30.5	N/A
Water	33.9	31.3	30.0	43.0
Coord. error $(Å)^d$	0.29	0.21	0.36	0.39
PDB code	6X0H	6X0I	6X0J	6X0K

Table S2X-ray diffraction and data collection statistics

^aValues for the outer resolution shell of data are given in parenthesis. ^b5% test set. ^cFrom MolProbity. The percentile ranks (PR) for Clashscore and MolProbity score are given in parentheses. ^dMaximum likelihood-based coordinate error estimate from PHENIX.

Site 1				
1	0=C1c2cccc2c2cc([N+](=0)[0-])cc3cccc1c23			
2	Oclcc(c2cccc2)c2cc3c(cc2n1)OCC03			
3	CC(=O)NCCc1c(c2ccccc2)[nH]c2ccccc12			
4	Oclnc2cc(C(F)(F)F)cc(n3cccc3)c2nc10			
5	CCCclnc2c3ccc(F)cc3c3c(=0)[nH]ccc3c2[nH]1			
6	Cclccc(C(0)(c2ccc(C)cc2)c2ccccn2)cc1			
7	COclcccc(c2cccc3c2CC(=0)C(N)CC3)c1			
8	O=C(/C=C/c1cccc(/C=C/C(=0)c2cccc2)c1)NO			
9	Cclccc(O)c2[nH]c(Cc3cccc4ccccc34)nc12			
10 ^a	0=c1c2cccc2c2nc3[nH]c(=0)[nH]c(=0)c3cc12			
	Site 2			
1	0=c1[nH]c(c2cccc2)cc2onc(c3ccccc3)c12			
2	CC(=0)0c1cccc(c2cc3cc(C)ccc3oc2=0)c1			
3	O=C(Nc1ccc(F)cc1)C(=0)C1C(=0)Nc2ccccc12			
4	Cclccc2cccc(NC3OC(=0)c4ccccc34)c2n1			
5 ^a	0=c1c2cccc2c2nc3[nH]c(=0)[nH]c(=0)c3cc12			
6	0=C1/C(=C/c2ccc(0)c([N+](=0)[0-])c2)/C0c2ccccc12			
7	O=C(Nclnnc(c2ccccc2)s1)clccccclF			
8	CC(=0)N1CC2(NC(=0)c3ccccc3N2)c2ccccc12			
9	0=C(0)/C(=C/C(=0)c1cccc(c2nnn[nH]2)c1)/0			
10	N=cloc2cccc2cclC(=0)Nclcccc(0)cl			

Table S3SMILES of the top 10 compounds from docking

^aCompound 10 of site 1 and compound 5 of site 2 are the same.

Table S4Physicochemical properties of the top 10 compounds from docking

	Site 1	Site 2
Molecular weight (g/mol)	284 ± 10	287 ± 14
No. heavy atoms	21.3 ± 0.7	21.3 ± 1.1
No. aromatic atoms	15.7 ± 2.3	15 ± 3.2
Fraction of C atoms in sp ³	0.109 ± 0.09	0.052 ± 0.06
No. rotatable bonds	2.4 ± 1.8	2.5 ± 1.4
No. H-bond acceptors	3.2 ± 1.6	4.0 ± 1.3
No. H-bond donors	1.5 ± 0.7	1.6 ± 1.0

Figure S1. Biosynthetic pathway for hydroxamate-containing siderophores. SidA (yellow) catalyzes the first step in the production of hydroxamate-containing siderophores in *Aspergillus fumigatus*. The components of each molecule which originate from L-Orn are shown in blue. SidF and SidL (purple) are N⁵-acetylases. SidD and SidC (blue) are non-ribosomal peptide synthetases. SidG (green) is an N²-acetlyase. An unidentified enzyme (orange) is a hydroxylase.

Figure S2. Electron density maps for the FAD, Tyr324, NADP⁺ and L-Orn in SidA structures (polder omit maps contoured at 3.5σ). (A) Oxidized enzyme without ligands bound. (B) Oxidized enzyme complexed with NADP⁺. (C) Dithionite-reduced enzyme complexed with L-Orn. (D) Reduced enzyme complexed with NADP⁺ and L-Orn.

CLUSTAL O(1.2.4) multiple sequence alignment

KtzI WP_01603723.1 WP_026218888.1 PvdA OKP15176.1 SidA XP_026607835.1 KAE8068769.1	MTVAHAGESPTHDVVGVGFGFANLSLAVALE MSAREFDIYDVVGIGFGFSNLSLAVALD 	31 28 28 30 57 59 56 60
KtzI WP_011603723.1 WP_109279069.1 WP_026218888.1 PvdA OKP15176.1 SidA XP_026607835.1 KAE8068769.1	ESPAALTSAFFERRASISWHQGMLLPAAKMQVSFLKDLATFRNPASRF EFRVNGMGNVFSNIFFERRSSFAWHPSMLLPSATMQISFLKDLVTFRNPTSSF ENGADSPAGPVTSAFFERQSSFGWHRMMLLPSATMQISFLKDLATLRNPVSRF EHQANBQGALEVLFLDRQGDYRWHGNTLVSQSELQISFLKDLVSLRNPTSPY DAMDPALSRAAS-GSFKPKVCFLERQKQFAWHSGMLVPGSKMQISFIKDLATLRDPRSSF DALDPCLNKCAPTSGWQFKVAFLERQKQFAWHSGMLVFGSKMQISFIKDLATLRDPRSSF DALDPCLNKCAPTSGWQFKVAFLERQKQFAWHSGMLVFGSKMQISFIKDLATLRDPRSSF : *::: ** : : :::******	79 81 81 81 116 119 116 120
KtzI WP_011603723.1 WP_109279069.1 WP_026218888.1 PvdA OKP15176.1 SidA XP_026607835.1 KAE8068769.1	SFVSFLHERGRLVRFANNHDFFPTRREFHDYLEWAQSKLAHEVSYDSEVTAIRPGPGRPV SFVAYLHESGRLPRFVNNQDFFPTREEFHQYLEWAQARVAHRVAYGSEARSLRLPAGVGP GFISFLHASGRLEQFINTQTFFPTREEFHQYLEWAQSLFSDRVSYGSEVTGIQLPTETTS GFISYLHASGRLPOFVNAQDFFPTRQEFHQYLEWAESSVTDRVSYGSEVTSIRPPQGIAA SFVNYLHKHDRLVDFINLGTFYPCRMEFNDYLRWVASHFQEQSRYGEEVLRIEPHLS TFLNYLHKNRLIHFTNLGTFLPARMEFEDYMRWCAQPFENVVSYGEEVUEVUPGKSPS TFLNYLHQKGRLIHFTNLSTFLPARMEFEDYMRWCAQPSDVVSYGEEVIEVLPGKSSPD TFLNYLHQKDRLIHFTNLSTFLPARMEFEDYMRWCAQPSDVVSYGEEVIEVLPGKSSPD TFLNYLHQKDRLIHFTNLSTFLPARMEFEDYMRWCAQPSDVVSYGEEVIEVLPGKSSPD TFLNYLHQKDRLIHFTNLSTFLPARMEFEDYMRWCAQFSDVVSYGEEVIEVLPGKSSPD TFLNYLHQKDRLIHFTNLSTFLPARMEFEDYMRWCAQFSDVVSYGEEVIEVLPGKSSPD TFLNYLHQKDRLIHFTNLSTFLPARMEFEDYMRWCAQFSDVVSYGEVIEVIEVGKSPD	139 141 141 138 174 179 176 180
KtzI WP_011603723.1 WP_109279069.1 WP ⁻ 026218888.1 PvdA OKP15176.1 SidA XP_026607835.1 KAB8068769.1	-DSVLVDVSTPEATRTVEARNIVISTGLVPRMPAGVQSDEFVWHSSRFLDHF -ERADRLCLQVADAASGTSRMVEARNVVISTGLVPTMPTGVERGERVWHSSEFLERF -ATAQYLQVNVRDCGTGDTRTVARNIVISTGLVPQVPDGVASDERVWHSSEFLERF -RDAKHEIEVEDLVSGATRLVKARNVTVSTGLVPRLPQCIERDERVMHSSEFLERF AGQVEALRVISRNAD-GEELVRTTRALVVSPGGTPRIPQVFRALKGDGRVFHHSQYLEHM DGVVDYFVURSRNAETGEISSRRAKVVVALGGKAKMPPGFPQDARIMHSSKYCTLL SSVVDFFTVRSRNVETGEISARRTKVVIALGGSAKLPAELPQDPRIMHSSKYCAVL STIVDFFTVLSRNVETGEISSRSARKVVLALGGSAKLPAELPQDPRIMHSSKYCAVL STIVDFFTVLSRNVETGEISSRSARKVVLALGGTAKLPKELPQDPRIMHSSKYCTL : ::::: : : : : : : : : : : : : : : :	190 197 197 197 231 236 233 237
KtzI WP_011603723.1 WP_109279069.1 WP_026218888.1 PvdA OKP15176.1 SidA XP_026607835.1 KAB8068769.1	RDRDPRSLRRVAVAGGQQSAAEIVRFLHDNRPDTVVHAIMPSYGYVVADNTPFANQIF RRTSPARIRRVAVVGAGQSAAEITRFLYDELPHAEVSAIIPSYGYCVADDTPFANEVF KQASPDTLKKVAVVGAGQSAAEITRFLYDLPHARVSAILPSYGYSIADDTPFANEVF AKQPCSSGKPMKIAIIGGQQSAAEITRFLYDLHARVSAILPSYGYSDDTPFANQVF PNVLKNESAPYNIAVVGSQSAAEIFHDLQRYPNSRTTLILRDTALRPSDDSPFVNEFF PALLKDKSFYNIAVUGSQSAAEIFHDLQRYPNSRTTLILRDTALRPSDDSPFVNEFF PSLLKDNDEPYNIAVUGSQSAAEIFHDLQKRYPNSRTTLILRDSAMRPSDDSPFVNEFF PTMLKDNQEAYNIAVUGSQSAAEIFHDLQKRYPNSRTTLILRDSAMRPSDDSPFVNEFF PTMLKDNQEAYNIAVUGSQSAAEIFHDLQKRYPNSRTTLILRDTAMRPSDDSPFVNEFF PTMLKDNQEAYNIAVUGSQSAAEIFHDLQKRYPNSRTTLILRDTAMRPSDDSPFVNEFF	248 255 255 257 257 291 291 293 293
KtzI WP_011603723.1 WP_026218888.1 PvdA OKP15176.1 SidA XP_026607835.1 KAE8068769.1	DPAAVDDYFDGSKQAKDAFWRYHRNTNYSVVDDEVIRDLYRRGYDDEVAGAPRLNFVNLA DPEAIDDYYYATERTREALWRYHSNTNYSVVDDSVIRDLYRRSYEDDLRDVGRLRFLRIT DSAAVDDYYFGTERGREAFWRYHKNTNYSVVDDEVIRDLYQRMYMEELRGTKRLHLINLA DPGAVDEYYFGSDRTREAFWRYHKNTNYSVVDDEVIRDLYQRYYEELRGTKRLHLINLA APKFTDLIYSREHABRERLLREYHNTNYSVVDDDLIERIYGVFYRQKVSGIPRHAFRCMT NPERVEKFYQLPQEERHARIAKEKATNYSVVLELIEEIYNTMYLQRVQNPDESTWQHRI NPERVDKFYSQSAAERQRSLLARKATNYSVVLELIEEIYNDWYLQRVKNPDETQWQHRI NPERVDKFFNLSASERQRSLLARKATNYSVVLELIEEIYHMYLQRVKNPDETQWQHRV NPERVDKFFNLSASERQRSLAAAKATNYSVVLELIEEIYHMYLQRVKNPDETQWQHRI NPERVDKFFNLSASERQRSLAAAKATNYSVVLELIEEIFHDMYLQRVKNPDETQWQHRI *****	308 315 315 317 317 351 356 353 357
KtzI WP_011603723.1 WP_02279069.1 WP_026218888.1 PvdA OKP15176.1 SidA XP_026607835.1 KAB8068769.1	HVVGAKRIADDTRVTVYSMAREESYDLDVDVLVCATGYDPMDPGDLL RVAGVRSVGAQTRVSLRAGIDGDLRDLDVDVLVCATGYAMMEPTGLL RVDQVKRSGDESRVSMESLLDGSQDLDVDALVFATGYDSMDFSGVL TVERATATAQGIELALRDAGSGELSVETVDAVILATGYERQLHRQLL LPERKITRVEHHGPSKMRIHLKSKFPESGAANDVKSTLEVDALWVATGYRRNAHEQLL LPERKITRVEHHGPSKMRIHLKSKFPESGAANDVKSTLEVDALWVATGYNRNAHEQLL LPGRKITRVEHYGPNKRMRVHVKAVKDGKDSLVGDGKEVLEVDALMVATGYNRNAHEQLL LPGRKITRVEHYGPNKRMRVHVKAVKDGKDSLVGDGKEILEIDALMVATGYNRNAHEQLL LFGRKITRVEHYGPNKRMRVHVKAVKDGKDSLVGDGKEILEIDALMVATGYNRNAHEQLL LFGRKITRVEHYGPNKRMRVHVKAVKDKGKDSLVGDGKEILEIDALMVATGYNRNAHEQLL	355 362 362 364 407 416 413 417
KtzI WP_011603723.1 WP_109279069.1 WP_02618888.1 PvdA OKP15176.1 SidA XP_026607835.1 KAB8068769.1	GELAEHCVQDAEGRWQVDRDYRMVTTPDLRCGIYLQGGTEHTHGLSSSLLSNLATRS GDLDQYCLRDEAGRYRIERDYRIVTAPEMQCGIYLQGGTEHTHGLSSSLLSNIAVRG GVLDDYCLRDEAGRHRVGRDYRLVTTPDVSCGIYLQGGTEHTHGLTSSLLSNIAVRG GDLDRYCLRDEAGRHRVGRDYRLVTPPENGCGIYLQGGTEHTHGLTSSLLSNIAVRG BPLAEYL-GDHEIGRDYRLQTDERCKVAIYAQGFSQASHGLSDTLLSVLPVRA EQVCCLR-PVGQTAMAPGRDYRVELDGGKVSAGAGIMLQGCNEKTHGLSDSLLSVLAVRG SKVQQLR-PTGQDRWTPRHRDYRVENDPSKVSSAGGIMLQGSNEQTHGLSDSLLSVLAVRG KNVQQLR-PTGQDRWTPSRDYRVELDGSKVSADAGIMLQGSNEQTHGLSDSLLSVLANG SKVQQLR-PATQDRWTPSRDYRVELDBSKVSADAGIMLQGSNEQTHGLSDSLLSVLANG SKVQLR-PATQDRWTPSRDYRVELDBSKVSADAGIMLQGSNEQTHGLSDSLLSVLANG SKVQLR-PATQDRWTPSRDYRVELDBSKVSADAGIMLGGSNEQTHGLSDSLLSVLANG SKVQLR-PATQDRWTPSRDYRVELDBSKVSADAGIMLGGSNEQTHGLSDSLLSVLANG SKVQLR-PATQDRWTPSRDYRVELDBSKVSADAGIMLGGSNEQTHGLSDSLLSVLANG SKVQLR-PATQDRWTPSRDYRVELDBSKVSADAGIWLGGSNEQTHGLSDSLLSVLANG SKVQLR-PATQDRWTPSRDYRVELDBSKVSADAGIWLGGSNEQTHGLSDSLLSVLANG SKVQLR-PATQDRWTPSRDYRVELDBSKVSADAGIWLGGSNEQTHGLSDSLLSVLANG SKVQLR-PATQDRWTPSRDYRVELDBSKVSADAGIWLGGSNEQTHGLSDSLLSVLANG SKVQLR-PATQDRWTPSRDYRVELDBSKVSADAGIWLGGSNEQTHGLSDSLLSVLANG SKVQLR-PATQDRWTPSRDYRVELDBSKVSADAGIWLGGSNEQTHGLSDSLLSVLANG SKVQLR-PATQDRWTPSRDYRVELDBSKVSADAGIWLGGSNEQTHGLSDSLLSVLANG SKVQLR-PATQDRWTPSRDYRVELDBSKVSADAGIWLGGSNEQTHGLSDSLLSVLANG SKVQLR-PATQDRWTPSRDYRVELDBSKVSADAGIWLGGSNEQTHGLSDSLLSVLANG SKVQLR-PATQDRWTPSRDYRVELDBSKVSADAGIWLGGSNEQTHGLSDSLLSVLANG SKVQLR-PATQDRWTPSRDYRVELDBSKVSADAGIWLGGSNEQTHGLSDSLLSVLANG SKVQLR-PATQDRWTPSRDYRVELDBSKVSADAGIWLGGSNEQTHGLSDSLLSVLANG SKVQLR-PATQDRWTPSRDYRVELDBSKVSADAGIWLGGSNEQTHGLSDSLLSVLANG SKVY	412 419 419 416 466 475 472 476
KtzI WP_011603723.1 WP_026218089.1 PvdA OKP15176.1 SidA XP_026607835.1 KAE8068769.1	GEIVSSIERRKS 424 GEIIDSIVARSAERTAPCAVLAEA 443 GEIADSILQRRSVDGPAASGLTAPA 444 GEIADSVIRRVEHELELERNAALEVARETR 450 EEISGSLYQHLKPGTAARALHE-HALAS 443 GEMVDSVFGDELAGKTVQDTR-LRAML 492 GEMVOSIFGEQLERAAVQGHQ-LRAML 501 GEMVNSIFGELAGAAVPDTFF.RAML 498 GEMVNSIFGEGIAGAAVPDTTQIRAML 503	

Figure S3. Multiple sequence alignment of ornithine hydroxylases. The Tyr-loop is highlighted in yellow.

Figure S4. Hydrogen bonding between His91 and the ribityl 4'-OH of SidA in the resting state (green), dithionite-reduced enzyme with L-Orn bound (light orange), oxidized enzyme with NADP⁺ (pale blue), and reduced enzyme with NADP⁺ (pink). Oxidized and reduced FADs are colored yellow and gray, respectively.

Figure S6. Chemical structures of the top 10 compounds from docking to site 2.

Figure S7. The top-ranked compound docked to site 2. The FAD is colored yellow.