SUPPORTING INFORMATION

Structural Determinants of Flavin Dynamics in a Class B Monooxygenase

Ashley C. Campbell,[†] Reeder Robinson,[‡] Didier Mena-Aguilar,[‡] Pablo Sobrado^{*,‡}, and John J. Tanner^{*,†,#}

[†]Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, United States

*Department of Biochemistry and Center for Drug Discovery, Virginia Tech, Blacksburg, VA, 24061, United States

*Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States

Table of Contents

Table S1. X-ray diffraction data collection and refinement statistics	
Figure S1. UV-visible spectra of SidA and M101A	
Figure S2. Activity of M101A under steady-state conditions	S-4
Figure S3. Reduction of the FAD in M101A by NAPDH	S-5
Figure S4. pH dependence of flavin oxidation in M101A	
Figure S5. Oxidation of M101A in the presence of L-Orn at various pH values	
Figure S6. Oxidation of M101A in the absence of L-Orn at various pH values	
Figure S7. Oxidation of M101A at pD 7.0 and 9.0 in H_2O and D_2O	S-9

	Ligand-free	NADP+
Space group	P21	P21
Unit cell	a = 76.44,	<i>a</i> = 80.23,
parameters (Å,°)	b =155.27,	<i>b</i> = 153.81,
	<i>c</i> = 88.27,	<i>c</i> = 89.87,
	$\beta = 110.33$	β = 109.28
Resolution (Å) ^a	61.4 - 2.20	62.9 - 2.10
	(2.24 - 2.20)	(2.14 - 2.10)
Observations	340416	401873
Unique refls.	96363	115533
$R_{ m merge}(I)^{ m a}$	0.108 (1.235)	0.082 (0.445)
Mean I/σ ^a	10.8 (0.9)	9.4 (1.7)
$\text{CC}_{1/2}^{a}$	0.995 (0.484)	0.993 (0.740)
Completeness (%) ^a	98.7 (89.2)	96.6 (95.9)
Multiplicity ^a	3.5 (2.8)	3.5 (2.9)
No. of atoms		
Protein	13919	13765
FAD	212	212
NADP+	N/A	192
Water	387	571
$R_{ m cryst}^{ m a}$	0.194 (0.334)	0.204 (0.205)
$R_{ m free}{}^{ m a,b}$	0.230 (0.378)	0.241 (0.255)
rmsd bonds (Å)	0.007	0.008
rmsd angles (°)	0.942	0.986
Ramachandran plot ^c		
Favored (%)	96.80	97.41
Outliers (%)	0.11	0.00
Clashscore (PR) ^c	3.38 (99)	2.94 (99)
MolProbity score (PR) ^c	1.53 (98)	1.25 (100)
Average B (Å ²)		
Protein	35.1	28.8
FAD	27.5	23.4
NADP+	N/A	25.5
Water	, 30.1	26.1
Coord. error (Å) ^d	0.30	0.22
PDB code	7JVK	7JVL

Table S1. X-ray Diffraction Data Collection and Refinement Statistics

^aValues for the outer resolution shell of data are given in parenthesis. ^b2% test set. ^cFrom MolProbity. The percentile ranks (PR) for Clashscore and MolProbity score are given in parentheses. ^dMaximum likelihood-based coordinate error estimate from PHENIX.

Figure S1. UV-visible spectra of SidA (black) and M101A (blue).

Figure S2. Activity of M101A under steady-state conditions. (A) Results from the L-Orn hydroxylation. (B) Results from oxygen consumption assays.

Figure S3. Reduction of the FAD in M101A by NAPDH. (A) Time dependence of the reduction of the FAD in M101A by NAPDH. The reaction of oxidized M101A with NAPDH (15-500 μ M) was monitored at 458 nm. The decrease in absorbance corresponds to flavin reduction. The solid lines are fits to Eq. 1. (B) Rate constants as a function of NADPH concentration.

Figure S4. pH dependence of flavin oxidation in M101A monitored at 458 nm. Rate constant for flavin oxidation measured in the absence (A) or presence (B) of L-Orn. The data were fit to Eq. 3.

Figure S5. Oxidation of M101A monitored at 458 nm in the presence of L-Orn at various pH values. The data were fit to the triple exponential function in Eq. 2.

Figure S6. Oxidation of M101A monitored at 458 nm in the absence of L- Orn at various pH values. The data were fit to double exponential rise (Eq. 2 with the third term omitted).

Figure S7. Oxidation of M101A at pD 7.0 in $H_2O(A)$, pD 7.0 in $D_2O(B)$, pD 9.0 in $H_2O(C)$, or pD 9.0 in $D_2O(D)$ (Experiment done in triplicate, only one sample is shown). The data were fit to the triple exponential function in Eq. 2.